avatar
Рейтинг
+777.46
Сила
0.10

ххх

Публикации

Концепции создания Личного Подсобного Хозяйства (ЛПХ) современного типа.

13 фото
image


Для кого:

1)  Для семей, желающих переехать в сельскую местность на постоянное жительство.
2)  Для семей, уже живущих в сельской местности и ведущих личное подсобное хо-зяйство, но желающих существенно увеличить эффективность своих личных под-собных хозяйств.
 
Для чего:
Попытка создания действительно счастливой и плодотворной жизни семьи. 

За счёт чего:
1) За счёт создания исключительно комфортных и благоприятных условий жизни всех членов семьи и гостей. 
2) За счёт собственного высокоэффективного труда по производству широкого спектра сельскохозяйственной продукции. Доходность от деятельности каждого взрослого члена семьи не менее 1 (одного) миллиона рублей в год.
 

Какими средствами мы готовы реализовать такие условия:
1) Компоновка жилья и производств
Показать все 13 фото →

Передача электроэнергии на большие расстояния

История инноваций
В последней трети XIX века во многих крупных промышленных центрах Европы и Америки стала очень остро ощущаться энергетическая проблема. Жилые дома, транспорт, фабрики и мастерские требовали все больше топлива, подвозить которое приходилось издалека, вследствие чего цена на него постоянно росла.
В этой связи то здесь, то там стали обращаться к гидроэнергии рек, гораздо более дешевой и доступной. Вместе с тем повсеместно возрастал интерес к электрической энергии. Уже давно было отмечено, что этот вид энергии чрезвычайно удобен: электричество легко генерируется и так же легко преобразуется в другие виды энергии, без труда передается на расстояние, подводится и дробится.

Первые электрические станции обычно представляли собой электрогенератор, присоединенный к паровой машине или турбине, и предназначались для снабжения электроэнергией отдельных объектов (например, цеха или дома, в крайнем случае, квартала). С середины 80‑х годов стали строиться центральные городские электростанции, дававшие ток прежде всего для освещения. (Первая такая электростанция была построена в 1882 году в Нью‑Йорке под руководством Эдисона.) Ток на них вырабатывался мощными паровыми машинами. Но уже к началу 90‑х годов стало ясно, что таким образом энергетическую проблему не разрешить, поскольку мощность центральных станций, расположенных в центральной части города, не могла быть очень большой. Использовали они те же уголь и нефть, то есть не снимали проблемы доставки топлива.

Дешевле и практичнее было возводить электростанции в местах с дешевыми топливными и гидроресурсами. Но, как правило, местности, где можно было в большом количестве получать дешевую электроэнергию, были удалены от промышленных центров и больших городов на десятки и сотни километров. Таким образом, возникла другая проблема — передачи электроэнергии на большие расстояния.

Первые опыты в этой области относятся к самому началу 70‑х годов XIX века, когда пользовались в основном постоянным током. Они показали, что как только длина соединительного провода между генератором тока и потреблявшим этот ток двигателем превышала несколько сотен метров, ощущалось значительное снижение мощности в двигателе из‑за больших потерь энергии в кабеле. Это явление легко объяснить, если вспомнить о тепловом действии тока. Проходя по кабелю, ток нагревает его. Эти потери тем больше, чем больше сопротивление провода и сила проходящего по нему тока. (Количество выделяющейся теплоты Q легко вычислить. Формула имеет вид: Q=R•I2, где I — сила проходящего тока, R — сопротивление кабеля. Очевидно, что сопротивление провода тем больше, чем больше его длина и чем меньше его сечение. Если в этой формуле принять I=P/U, где P — мощность линии, а U — напряжение тока, то формула примет вид Q=R•P2/U2. Отсюда видно, что потери на тепло будут тем меньше, чем больше напряжение тока.) Имелось только два пути для снижения потерь в линии электропередачи: либо увеличить сечение передающего провода, либо повысить напряжение тока. Однако увеличение сечения провода сильно удорожало его, ведь в качестве проводника тогда использовалась достаточно дорогая медь. Гораздо более выигрыша сулил второй путь.

В 1882 году под руководством известного французского электротехника Депре была построена первая линия электропередачи постоянного тока от Мисбаха до Мюнхена, протяженностью в 57 км. Энергия от генератора передавалась на электродвигатель, приводивший в действие насос. При этом потери в проводе достигали 75%. В 1885 году Депре провел еще один эксперимент, осуществив электропередачу между Крейлем и Парижем на расстояние в 56 км. При этом использовалось высокое напряжение, достигавшее 6 тысяч вольт. Потери снизились до 55%. Было очевидно, что, повышая напряжение, можно значительно повысить КПД линии, но для этого надо было строить генераторы постоянного тока высокого напряжения, что было связано с большими техническими сложностями. Даже при этом сравнительно небольшом напряжении Депре приходилось постоянно чинить свой генератор, в обмотках которого то и дело происходил пробой. С другой стороны, ток высокого напряжения нельзя было использовать, поскольку на практике (и прежде всего для нужд освещения) требовалось совсем небольшое напряжения, порядка 100 вольт. Для того чтобы понизить напряжение постоянного тока, приходилось строить сложную преобразовательную систему: ток высокого напряжения приводил в действие двигатель, а тот, в свою очередь, вращал генератор, дававший ток более низкого напряжения. При этом потери еще более возрастали, и сама идея передачи электроэнергии становилась экономически невыгодной.

Переменный ток в отношении передачи казался более удобным хотя бы уже потому, что его можно было легко трансформировать, то есть в очень широких пределах повышать, а затем понижать его напряжение. В 1884 году на Туринской выставке Голяр осуществил электропередачу на расстояние в 40 км, подняв с помощью своего трансформатора напряжение в линии до 2 тысяч вольт. Этот опыт дал неплохие результаты, но и он не привел к широкому развитию электрификации, поскольку, как уже говорилось, двигатели однофазного переменного тока по всем параметрам уступали двигателям постоянного тока и не имели распространения. Таким образом, и однофазный переменный ток было невыгодно передавать на большие расстояния. В следующие годы были разработаны две системы многофазных токов — двухфазная Теслы и трехфазная Доливо‑Добровольского. Каждая из них претендовала на господствующее положение в электротехнике. По какому же пути должна была пойти электрификация? Точного ответа на этот вопрос поначалу не знал никто. Во всех странах шло оживленное обсуждение достоинств и недостатков каждой из систем токов. Все они имели своих горячих сторонников и ожесточенных противников. Некоторая ясность в этом вопросе была достигнута только в следующем десятилетии, когда был сделан значительный прорыв в деле электрификации. Огромную роль в этом сыграла Франкфуртская международная выставка 1891 года.

В конце 80‑х годов встал вопрос о сооружении центральной электростанции во Франкфурте‑на‑Майне. Многие германские и иностранные фирмы предлагали городским властям различные варианты проектов, предусматривающие применение либо постоянного, либо переменного тока. Обер‑бургомистр Франкфурта находился в явно затруднительном положении: он не мог сделать выбор там, где это было не под силу даже многим специалистам. Для выяснения спорного вопроса и решено было устроить во Франкфурте давно планировавшуюся международную электротехническую выставку. Ее главной целью должна была стать демонстрация передачи и распределения электрической энергии в различных системах и применениях. Любая фирма могла продемонстрировать на этой выставке свои успехи, а международная комиссия из наиболее авторитетных ученых должна была подвергнуть все экспонаты тщательному изучению и дать ответ на вопрос о выборе рода тока. К началу выставки различные фирмы должны были построить свои линии передачи электроэнергии, причем одни собирались демонстрировать передачу постоянного тока, другие — переменного (как однофазного, так и многофазного). Фирме АЭГ было предложено осуществить передачу электроэнергии из местечка Лауфен во Франкфурт на расстояние 170 км. По тем временам это было огромное расстояние, и очень многие считали саму идею фантастической. Однако Доливо‑Добровольский был настолько уверен в системе и возможностях трехфазного тока, что убедил директора Ротенау согласиться на эксперимент.

Когда появились первые сообщения о проекте электропередачи Лауфен — Франкфурт, электротехники во всем мире разделились на два лагеря. Одни с энтузиазмом приветствовали это смелое решение, другие отнеслись к нему как к шумной, но беспочвенной рекламе. Подсчитывали возможные потери энергии. Некоторые считали, что они составят 95%, но даже самые большие оптимисты не верили, что КПД такой линии превысит 15%. Наиболее известные авторитеты в области электротехники, в том числе знаменитый Депре, высказывали сомнения в экономической целесообразности этой затеи. Однако Доливо‑Добровольский сумел убедить руководство компании в необходимости взяться за предложенную работу.

Поскольку до открытия выставки оставалось совсем мало времени, строительство ЛЭП проходило в большой спешке. За полгода Доливо‑Добровольский должен был спроектировать и построить небывалый по мощности асинхронный двигатель на 100 л.с. и четыре трансформатора на 150 киловатт, при том что максимальная мощность однофазных трансформаторов составляла тогда только 30 киловатт. Не могло быть и речи об опытных конструкциях: на это просто не хватало времени. Даже построенный двигатель и трансформаторы не могли быть испытаны на заводе, так как в Берлине не было трехфазного генератора соответствующей мощности (генератор для Лауфеновской станции строили в Эрликсоне). Следовательно, все элементы электропередачи предстояло включить непосредственно на выставке в присутствии многих ученых, представителей конкурирующих фирм и бесчисленных корреспондентов. Малейшая ошибка была бы непростительной. Кроме того, на плечи Доливо‑Добровольского легла вся ответственность за проектирование и монтажные работы при сооружении ЛЭП. Собственно, ответственность была даже больше — ведь решался вопрос не только о карьере Доливо‑Добровольского и престиже АЭГ, но и о том, по какому пути пойдет развитие электротехники. Доливо‑Добровольский прекрасно понимал всю важность стоявшей перед ним задачи и писал позже: «Если я не хотел навлечь на мой трехфазный ток несмываемого позора и подвергнуть его недоверию, которое вряд ли удалось бы потом быстро рассеять, я обязан был принять на себя эту задачу и разрешить ее. В противном случае опыты Лауфен‑Франкфурт и многое, что потом должно было развиться на их основе, пошли бы по пути применения однофазного тока».

В Лауфене была в короткий срок построена небольшая гидроэлектростанция. Турбина мощностью 300 л.с. вращала генератор трехфазного тока, спроектированный и построенный, как уже говорилось, на заводе в Эрликсоне. От генератора три медных провода большого сечения вели к распределительному щиту. Здесь были установлены амперметры, вольтметры, свинцовые предохранители и тепловые реле. От распределительного щита три кабеля шли к трем трехфазным трансформаторам «призматического» типа. Обмотки всех трансформаторов соединялись в звезду. Предполагалось вести электропередачу при напряжении в 15 тысяч вольт, но все расчеты делались на работу в 25 тысяч вольт. Для достижения такого высокого напряжения планировалось включить по два трансформатора на каждом конце линии, так чтобы их обмотки низшего напряжения были соединены параллельно, а обмотки высшего — последовательно.

От трансформаторов в Лауфене начиналась трехпроводная линия, подвешенная на 3182 деревянных опорах высотой 8 и 10 м со средним пролетом 60 м. Никаких выключателей на линии не было. Для того чтобы в случае необходимости можно было быстро отключить ток, предусматривались два оригинальных приспособления. Рядом с Лауфенской гидроэлектростанцией были установлены две опоры на расстоянии 2, 5 м одна от другой. Здесь в разрыв каждого провода линии включалась плавкая вставка, состоявшая из двух медных проволок диаметром 0, 15 мм. Во Франкфурте и вблизи железнодорожных станций (часть линии шла вдоль железнодорожного полотна) были установлены так называемые угловые замыкатели. Каждый из них представлял собой металлический брус, подвешенный с помощью шнура на Г‑образной опоре. Достаточно было дернуть за шнур, и брус опускался на все три провода, создавая искусственное короткое замыкание, что вызывало перегорание плавких вставок в Лауфене и обесточивание всей линии. Во Франкфурте провода подходили к понижающим трансформаторам (они находились на выставке в специальном павильоне), которые снижали напряжение на выходе до 116 вольт. К одному из этих трансформаторов было подключено 1000 ламп накаливания по 16 свечей (55 ватт) каждая, к другому — большой трехфазный двигатель Доливо‑Добровольского, размещавшийся в другом павильоне.

Линейное напряжение генератора в Лауфене составляло 95 вольт. Повышающий трансформатор имел коэффициент трансформации равный 154. Следовательно, рабочее напряжение в ЛЭП составляло 14650 вольт (95•154). Для того времени это было очень высокое напряжение. Правительства земель, через которые проходила ЛЭП, были встревожены ее сооружением. У некоторых возникало чувство страха даже перед деревянными столбами, на которых были укреплены таблички с черепами. Особые опасения вызывала возможность обрыва провода и падения его на рельсы железной дороги. Выставочному комитету и сооружавшим линиям фирмам пришлось провести огромную разъяснительную работу, чтобы убедить правительственных чиновников в том, что все возможные опасности предусмотрены и что линия надежно защищена. Администрация Бадена все же не разрешала соединять участок уже готовой линии на баденской границе. Для того чтобы устранить последние препятствия и рассеять сомнения местных властей, Доливо‑Добровольский провел опасный, но весьма убедительный эксперимент. Когда линия была впервые включена под напряжение, один из проводов на границе Бадена и Гессена был искусственно оборван и с яркой вспышкой упал на рельсы железной дороги. Доливо‑Добровольский сейчас же подошел и поднял провод голыми руками: настолько он был уверен, что сработает сконструированная им защита. Этот «метод» доказательства оказался очень наглядным и устранил последнюю преграду перед испытаниями линии.

25 августа 1891 года в 12 часов дня на выставке впервые вспыхнули 1000 электрических ламп, питаемых током Лауфенской гидроэлектростанции. Эти лампы обрамляли щиты и арку над входом в ту часть выставки, экспонаты которой относились к электропередаче Лауфен — Франкфурт. На следующий день был успешно испытан двигатель мощностью в 75 киловатт, который 12 сентября впервые привел в действие десятиметровый водопад. Несмотря на то что линия, машины, трансформаторы, распределительные щиты изготовлялись в спешке (некоторые детали, по свидетельству Доливо‑Добровольского, продумывались всего в течение часа), вся установка, включенная без предварительного испытания, к удивлению одних и к радости других, сразу же стала хорошо работать. Особое впечатление на посетителей выставки произвел водопад. Однако лица, более осведомленные в вопросах физики и электротехники, радовались в этот день не огромному водопаду, сверкавшему тысячами стеклянных брызг, подсвеченных десятками разноцветных ламп. Их восторг был связан с пониманием того, что этот прекрасный искусственный водопад приводится в действие источником, находящимся на расстоянии 170 км на реке Неккар у местечка Лауфен. Они видели перед собой блестящее решение проблемы передачи энергии на большие расстояния.

В октябре международная комиссия приступила к испытаниям Лауфен‑Франкфуртской линии электропередачи. Было установлено, что потери при электропередаче составляют всего 25%, что являлось очень хорошим показателем. В ноябре линия была испытана при напряжении в 25 тысяч вольт. При этом КПД ее увеличился, и потери снизились до 21%. Подавляющее большинство электриков всех стран мира (выставку посетило более миллиона человек) по достоинству оценило значение Лауфен‑Франкфуртского эксперимента. Трехфазный ток получил очень высокую оценку, и ему отныне был открыт самый широкий путь в промышленность. Доливо‑Добровольский сразу выдвинулся в число ведущих электротехников планеты, и имя его приобрело мировую известность.

Так была разрешена главная энергетическая проблема конца XIX века — проблема централизации производства электроэнергии и передачи ее на большие расстояния. Для всех стал ясен способ, каким многофазный ток мог быть подведен от далекой электростанции к каждому отдельному цеху, а потом и отдельному станку. Ближайшим следствием возникновения техники многофазного тока явилось то, что в последующие годы во всех развитых странах началось бурное строительство электростанций и широчайшая электрификация промышленности. Правда, в первые годы она еще осложнялась ожесточенной борьбой между конкурирующими компаниями, стремившимися внедрить тот или иной тип тока. Так, в Америке сначала взяла вверх компания Вестингауза, которая, скупив патенты Теслы, старалась распространить двухфазный ток. Триумфом двухфазной системы стало строительство в 1896 году мощной ГЭС на Ниагарском водопаде. Но трехфазный ток вскоре повсеместно был признан наилучшим. Действительно, двухфазная система требовала проведения четырех проводов, а трехфазная — только трех. Кроме большей простоты, она сулила значительную экономию средств. Позже Тесла, по примеру Доливо‑Добровольского, предложил объединять два обратных провода вместе. При этом происходило сложение токов, и в третьем проводе тек ток примерно в 1, 4 раза больший, чем в двух других. Поэтому сечение этого провода было в 1, 4 раза больше (без этого увеличения сечения в цепи возникали перегрузки). В результате затраты на двухфазную проводку все равно оказывались больше, чем на трехфазную, между тем как двухфазные двигатели по всем параметрам уступали трехфазным. В XX веке трехфазная система утвердилась повсеместно. Даже Ниагарская электростанция была со временем переоборудована на трехфазный ток.


Источник: izobreti.ru

Электрогенератор

Это явление было правильно объяснено и обобщено французским физиком Ампером, который установил, что магнитные свойства любого тела являются следствием того, что внутри него протекают замкнутые электрические токи. (Или, говоря современным языком, любой электрический ток создает вокруг проводника магнитное поле.) Таким образом, любые магнитные взаимодействия можно рассматривать как следствия электрических. Однако, если электрический ток вызывает магнитные явления, естественно было предположить, что и магнитные явления могут вызвать появление электрического тока. Долгое время физики в разных странах пытались обнаружить эту зависимость, но терпели неудачу. В самом деле, если, к примеру, рядом с проводником или катушкой лежит постоянный магнит, никакого тока в проводнике не возникает. Но если мы начнем перемещать этот магнит: приближать или удалять его от катушки, вводить и вынимать магнит из нее, то электрический ток в проводнике появляется, и его можно наблюдать в течение всего того периода, во время которого магнит движется. То есть электрический ток может возникать только в переменном магнитном поле. Впервые эту важную закономерность установил в 1831 году английский физик Майкл Фарадей.

Проведя серию опытов, Фарадей открыл, что электрический ток возникает (индуцируется) во всех тех случаях, когда происходит движение проводников относительно друг друга или относительно магнитов. Если вводить магнит в катушку или, что то же самое, перемешать катушку относительно неподвижного магнита в ней индуцируется ток. Если подвигать одну катушку к другой, через которую проходит электрический ток, в ней также появляется ток. Того же эффекта можно добиться при замыкании и размыкании цепи, поскольку в момент включения и выключения ток нарастает и убывает в катушке постепенно и создает вокруг нее переменное магнитное поле. Поэтому если поблизости от такой катушки находится другая, не включенная в цепь, в ней возникает электрический ток.

Открытие Фарадея имело огромные последствия для техники и всей человеческой истории, так как теперь стало ясно, каким образом механическую энергию превращать в электрическую, а электрическую — обратно в механическую. Первое из этих преобразований легло в основу работы электрогенератора, а второе — электродвигателя. Впрочем, сам факт открытия еще не означал, что все технические задачи на этом пути разрешены: около сорока лет ушло на создание работоспособного генератора и еще двадцать лет на изобретение удовлетворительной модели промышленного электродвигателя. Но главное: принцип действия двух этих важнейших элементов современной цивилизации сделался очевиден именно благодаря открытию явления электромагнитной индукции.

Первый примитивный электрогенератор создал сам Фарадей. Для этого он поместил медный диск между полюсами N и S постоянного магнита. При вращении диска в магнитном поле в нем наводились электрические токи. Если на периферии диска и в его центральной части помещали токоприемники в виде скользящих контактов, то между ними появлялась разность потенциалов, как на гальванической батарее. Замыкая цепь, можно было наблюдать на гальванометре непрерывное прохождение тока.

Установка Фарадея годилась только для демонстраций, но вслед за ней появились первые магнитоэлектрические машины (так стали называть электрогенераторы, в которых использовались постоянные магниты), рассчитанные на создание работающих токов. Самой ранней из них была магнитоэлектрическая машина Пиксии, сконструированная в 1832 году.

Принцип ее действия был очень прост: мимо неподвижных, снабженных сердечниками катушек E и E' двигались посредством кривошипа и зубчатой передачи лежащие против них полюсы подковообразного магнита AB, вследствие чего в катушках индуцировались токи. Недостатком машины Пиксии было то, что в ней приходилось вращать тяжелые постоянные магниты. В последующем изобретатели обычно заставляли вращаться катушки, оставляя магниты неподвижными. Правда, при этом приходилось решать другую задачу: каким образом отвести во внешнюю цепь ток с вращающихся катушек? Это затруднение, однако, было легко преодолимо. Прежде всего, катушки соединяли между собой последовательно одними концами их проводки. Тогда другие концы могли служить полюсами генератора. Их соединяли с внешней цепью при помощи скользящих контактов.

Скользящий контакт устроен следующим образом: на оси машины крепились два изолированных металлических кольца b и d, каждое из которых было соединено с одним из полюсов генератора. По окружности этих колец вращались две плоские металлические пружины B и B', на которые была заключена внешняя цепь. При таком приспособлении уже не было никаких затруднений от вращения оси машины — ток переходил из оси в пружину в месте их соприкосновения.

Еще одно неудобство заключалось в самом характере тока электрогенератора. Направление тока в катушках зависит от того, приближаются они к полюсу магнита или удаляются от него. Из этого следует, что ток, возникающий во вращающемся проводнике, будет не постоянным, а переменным. По мере приближения катушки к одному из полюсов магнита сила тока будет нарастать от нуля до какого‑то максимального значения, а затем — по мере удаления вновь уменьшаться до нуля. При дальнейшем движении ток изменит свое направление на противоположное и опять будет нарастать до какого‑то максимального значения, а потом убывать до нуля. Во время следующих оборотов этот процесс будет повторяться. Итак, в отличие от электрической батареи, электрогенератор создает переменный ток, и с этим приходится считаться.

Как известно, большинство современных электрических приборов созданы таким образом, чтобы питаться от сети переменного тока. Но в XIX веке переменный ток был неудобен по многим причинам, прежде всего психологическим, поскольку в прежние годы привыкли иметь дело с постоянным током. Впрочем, переменный ток можно было легко преобразовать в прерывистый, имеющий одно направление. Для этого достаточно было с помощью специального устройства — коммутатора — изменить контакты таким образом, чтобы скользящая пружина переходила с одного кольца на другой в тот момент, когда ток меняет свое направление. В этом случае один контакт постоянно получал ток одного направления, а другой — противоположного.

Подобное устройство пружины и контакта кажется, на первый взгляд, очень сложным, на деле же оно очень просто. Каждое кольцо коммутатора делали из двух полуколец, концы которых отчасти заходят друг за друга, а пружины были настолько широкими, что могли скользить по двум рядом помещенным полукольцам. Половины одного и того же кольца помещались на некотором расстоянии друг от друга, но были соединены между собой. Так, полукольцо a, прикасающееся к пружине c, было соединено с полукольцом a', по которому скользила c'; точно так же соединялись между собой b и b', так что при одном полуобороте пружина c, касающаяся a, переходила на b, а пружина c' переходила с b' на a'. Нетрудно было установить пружину таким образом, чтобы она переходила с одного кольца на другое в тот момент, когда в обмотке катушки менялось направление тока, и тогда каждая пружина все время давала ток одного и того же направления. Другими словами, они представляли из себя постоянные полюса; одна — положительный, другая — отрицательный, в то время как полюса катушек давали переменный ток.

Электрогенератор прерывистого постоянного тока вполне мог заменить неудобную во многих отношениях гальваническую батарею, и потому вызвал большой интерес у тогдашних физиков и предпринимателей. В 1856 году французская фирма «Альянс» даже наладила серийный выпуск больших динамо‑машин, приводившихся в действие от парового двигателя. В этих генераторах чугунная станина несла на себе неподвижно укрепленные в несколько рядов подковообразные постоянные магниты, расположенные равномерно по окружности и радиально по отношению к валу. В промежутках между рядами магнитов на валу были установлены несущие колеса с большим числом катушек. Также на валу был укреплен коллектор с 16‑ю металлическими пластинами, изолированными друг от друга и от вала машины. Ток, наводимый в катушках при вращении вала, снимался с коллектора при помощи роликов. Одна такая машина требовала для своего привода паровой двигатель мощностью 6‑10 л.с. Большим недостатком генераторов «Альянс» было то, что в них использовались постоянные магниты. Так как магнитное действие стальных магнитов сравнительно невелико, то для получения сильных токов нужно было брать большие магниты и в большом числе. Под действием вибрации сила этих магнитов быстро ослабевала. Вследствие всех этих причин КПД машины всегда оставался очень низким. Но даже с такими недостатками генераторы «Альянса» получили значительное распространение и господствовали на рынке в течение десяти лет, пока их не вытеснили более совершенные машины.

Прежде всего немецкий изобретатель Сименс усовершенствовал движущиеся катушки и их железные сердечники. (Эти катушки с железом внутри получили название «якоря» или «арматуры».) Якорь Сименса в форме «двойного Т» состоял из железного цилиндра, в котором были прорезаны с противоположных сторон два продольных желоба. В желобах помещалась изолированная проволока, которая накладывалась по направлению оси цилиндра. Такой якорь вращался между полюсами магнита, которые тесно его обхватывали.

По сравнению с прежними новый якорь представлял большие удобства. Прежде всего, очевидно, что катушка в виде цилиндра, вращающегося вокруг своей оси, в механическом отношении выгоднее катушки, насаженной на вал и вращавшейся вместе с ним. По отношению к магнитным действиям якорь Сименса имел ту выгоду, что давал возможность очень просто увеличить число действующих магнитов (для этого достаточно было удлинить якорь и прибавить несколько новых магнитов). Машина с таким якорем давала гораздо более равномерный ток, так как цилиндр был плотно окружен полюсами магнитов.

Но эти достоинства не компенсировали главного недостатка всех магнитоэлектрических машин — магнитное поле по‑прежнему создавалось в генераторе с помощью постоянных магнитов. Перед многими изобретателями в середине XIX века вставал вопрос: нельзя ли заменить неудобные металлические магниты электрическими? Проблема заключалась в том, что электромагниты сами потребляли электрическую энергию и для их возбуждения требовалась отдельная батарея или, по крайней мере, отдельная магнитоэлектрическая машина. Первое время казалось, что без них невозможно обойтись. В 1866 году Вильде создал удачную модель генератора, в котором металлические магниты были заменены электромагнитами, а их возбуждение вызывала магнитоэлектрическая машина с постоянными магнитами, соединенная с тем же паровым двигателем, который приводил в движение большую машину. Отсюда оставался только один шаг к собственно динамо‑машине, которая возбуждает электромагниты своим собственным током.

В том же 1866 году Вернер Сименс открыл принцип самовозбуждения. (Одновременно с ним то же открытие сделали некоторые другие изобретатели.) В январе 1867 году он выступил в Берлинской академии с докладом «О превращении рабочей силы в электрический ток без применения постоянных магнитов». В общих чертах его открытие заключалось в следующем. Сименс установил, что в каждом электромагните, после того как намагничивающий ток переставал действовать, всегда оставались небольшие следы магнетизма, которые были способны вызвать слабые индукционные токи в катушке, снабженной сердечником из мягкого магнитного железа и вращавшейся между полюсами магнита. Используя эти слабые токи, можно было привести генератор в действие без помощи извне.

Первая динамо‑машина, работавшая по принципу самовозбуждения, была создана в 1867 году англичанином Леддом, но в ней еще предусматривалась отдельная катушка для возбуждения электромагнитов. Машина Ледда состояла из двух плоских электромагнитов, между концами которых вращались два якоря Сименса. Один из якорей давал ток для питания электромагнитов, а другой — для внешней цепи. Слабый остаточный магнетизм сердечников электромагнитов сначала возбуждал очень слабый ток в арматуре первого якоря; этот ток обегал электромагниты и усиливал уже имеющееся в них магнитное состояние. Вследствие этого усиливался в свою очередь ток в арматуре, а последний еще более увеличивал силу электромагнитов. Мало помалу такое взаимное усиление шло до тех пор, пока электромагниты не приобретали полной своей силы. Тогда можно было привести в движение вторую арматуру и получить от нее ток для внешней цепи.

Следующий шаг в совершенствовании динамо‑машины был сделан в том направлении, что совершенно устранили одну из арматур и воспользовались другой не только для возбуждения электромагнитов, но и для получения тока во внешней цепи. Для этого нужно было только провести ток из арматуры в обмотку электромагнита, рассчитав все так, чтобы последний мог достичь полной своей силы и направить тот же ток во внешнюю цепь. Но при таком упрощении конструкции якорь Сименса оказывался непригодным, так как при быстрой перемене полярностей, в якоре возбуждались сильные паразитические токи, железо сердечников быстро разогревалось, и это могло при больших токах привести к порче всей машины. Необходима была другая форма якоря, более соответствовавшая новому режиму работы.

Удачное решение проблемы было вскоре найдено бельгийским изобретателем Зиновием Теофилем Граммом. Он жил во Франции и служил в кампании «Альянс» столярным мастером. Здесь он познакомился с электричеством. Размышляя над усовершенствованием электрогенератора, Грамм в конце концов пришел к мысли заменить якорь Сименса другим, имеющим кольцевую форму. Важное отличие кольцевого якоря (как будет показано ниже) состоит в том, что он не перемагничивается и имеет постоянные полюса (Грамм пришел к своему открытию самостоятельно, но надо сказать, что еще в 1860 г. итальянский изобретатель Пачинотти во Флоренции построил электрический двигатель с кольцеобразным якорем; впрочем, это открытие вскоре было забыто.)

Итак, исходная точка поисков Грамма заключалась в том, чтобы заставить вращаться внутри проволочной катушки железное кольцо, на котором наведены магнитные полюсы и таким образом получить равномерный ток постоянного направления.

Чтобы представить устройство генератора Грамма, рассмотрим сначала следующее приспособление. В магнитном поле, образуемом полюсами N и S, вращаются восемь замкнутых металлических колец, которые прикреплены на равном расстоянии друг от друга к оси при помощи спиц. Обозначим самое верхнее кольцо № 1 и будем считать по направлению хода часовой стрелки. Рассмотрим сперва кольца 1‑5. Мы видим, что кольцо 1 охватывает наибольшее число силовых линий магнитного поля, так как его плоскость перпендикулярна им. Кольцо 2 охватывает уже меньшее их число, так как оно наклонено к направлению линий, а сквозь кольцо 3 линии вовсе не проходят, так как его плоскость совпадает с их направлением. В кольце 4 число пересекаемых линий увеличивается, но, как легко заметить, они вступают в него уже с противоположной стороны, так как кольцо 4 обращено к полюсу магнита другой своей стороной по сравнению с кольцом 2. Пятое кольцо охватывает столько же линий, сколько первое, но входят они с противоположной стороны. Если мы будем вращать ось, к которой прикреплены кольца, то каждое кольцо будет последовательно проходить через положения 1‑5. При этом, при переходе из 1‑го положения в 3‑е в кольце возникает ток. На пути из положения 3 к 5, если бы силовые линии пересекали кольцо с той же самой стороны, в нем появлялся бы ток противоположный тому, что в положении 1‑3, но так как при этом кольцо изменяет свое положение относительно полюса, то есть поворачивается к нему другой стороной, ток в кольце сохраняет то же направление. Зато когда кольцо проходит из положения 5 через 6 и 7 опять к 1, в нем индуцируется ток, противоположный первому.

Заменив теперь наши воображаемые кольца витками вращающейся катушки, плотно намотанной на железное кольцо, мы получим кольцо Грамма, в котором ток будет индуцироваться точно так же, как описано выше. Предположим, что проволока обмотки не имеет изоляции, но железный сердечник покрыт изолирующей оболочкой и ток, индуцируемый в витках проводника, не может проходить в него. Тогда каждый виток спирали будет подобен тому кольцу, что мы рассматривали выше, и витки в каждой половине кольца будут представлять собой последовательно соединенные кольцевые проводники. Но обе половинки кольца соединены противоположно друг к другу. Значит, токи с обеих сторон направляются к верхней половине кольца, и там, следовательно, получается положительный полюс. Подобным же образом в нижней точке, откуда берут свое направление токи, будет находиться отрицательный полюс. Можно, следовательно, сравнить кольцо с батареей, составленной из двух частей, которые соединены между собой противоположно.

Если теперь соединить противоположные концы кольца, то получится замкнутая цепь постоянного тока. В нашем воображаемом устройстве этого можно легко достичь, укрепив скользящие контакты в виде пружины так, чтобы они касались верхней и нижней части вращающегося кольца и снимали с их помощью электрический ток. Но в действительности генератор Грамма имел более сложное устройство, поскольку здесь было налицо несколько технических затруднений: с одной стороны, для того чтобы снимать ток с кольца, витки обмотки должны быть обнажены, с другой — для получения сильных токов обмотка должна быть намотана плотно и в несколько слоев. Каким же образом изолировать нижние слои от верхних?

На практике кольцо Грамма дополняло особое, довольно сложное устройство, называемое коллектором, которое и служило для отвода токов из обмотки. Коллектор состоял из металлических пластин, прикрепленных к оси кольца и имевших форму секторов цилиндра. Каждая пластина тщательно изолировалась от соседних секторов и от оси кольца. Концы каждого сектора обмотки были соединены с одной из металлических пластин, а скользящие пружины помещались так, что постоянно находились в соединении с самым верхним и самым нижним секторами обмотки. Из обеих половин обмотки получался постоянный ток, направленный к той пружине, которая была соединена с верхним сектором. Ток обходил верхнюю цепь и возвращался в кольцо через нижнюю пружину. Таким образом, полюса с поверхности самого кольца переместились на его ось, откуда ток было снимать намного проще.

В таком виде воплотилась первоначальная модель электрогенератора. Однако она оказалась неработоспособной. Как писал Грамм в воспоминаниях о своем изобретении, тут явилась новая сложность: кольцо, на которое был намотан проводник, сильно разогревалось вследствие того, что здесь тоже при быстром вращении генератора индуцировались токи. В результате перегрева изоляция то и дело выходила из строя. Ломая голову над тем, как избежать этой неприятности, Грамм понял, что железный сердечник якоря нельзя делать сплошным, так как в этом случае вредные токи оказываются слишком большими. Но разбив сердечник на части так, чтобы образовались разрывы на пути возникающих токов, можно было сильно уменьшить их вредное действие. Этого можно было добиться, изготовив сердечник не из цельного куска, а из проволоки, налагая ее в виде кольца и тщательно изолируя один слой от другого. На это проволочное кольцо затем навивалась обмотка. Каждый сектор якоря представлял собой катушку из многих оборотов (слоев). Отдельные катушки соединялись так, что проволока непрерывно обегала железное кольцо и притом в одном и том же направлении. От мест соединения каждой пары катушек шел проводник к соответствующей пластине коллектора. Чем больше было число оборотов катушки, тем большей силы ток можно было снять с кольца.

Изготовленный таким образом якорь устанавливался на ось генератора. Для этого железное кольцо с внутренней стороны снабжалось железными спицами, которые скреплялись с коллектором массивным кольцом, насаженным на ось машины. Коллектор, как уже говорилось, состоял из отдельных металлических пластин одинаковой ширины. Отдельные слои коллектора были изолированы друг от друга и от оси генератора.

Для снятия тока служили коллекторные щетки, представлявшие собой упругие латунные пластины, плотно прилегавшие к коллектору в надлежащих местах. Они соединялись с зажимами машины, откуда постоянный ток поступал во внешнюю цепь. Провод, идущий к одному из зажимов, кроме того, образовывал обмотку электромагнитов. Простейшее соединение генератора с обмотками электромагнита можно было получить, соединив один конец обмотки электромагнита с одной из щеток коллектора, например отрицательной. Другой конец обмотки электромагнита подключался к положительной щетке. При таком соединении весь ток генератора проходил через электромагниты.

В целом первая динамо‑машина Грамма представляла собой две железные вертикальные стойки, соединенные сверху и снизу стержнями двух электромагнитов. Полюсы этих электромагнитов находились в их середине, так что каждый из них был как бы составлен из двух, одинаковые полюса которых были обращены друг к другу. Можно рассматривать это устройство иначе и считать, что две половины, прилегающие к каждой стойке и соединенные ею, образовывали два отдельных электромагнита, которые соединялись одноименными полюсами сверху и снизу. В тех местах, где образовывался полюс, к электромагнитам были присоединены особой формы железные насадки, которые входили в пространство между электромагнитами и обхватывали кольцеобразный якорь машины. Две стойки, связывающие оба электромагнита и составлявшие основу всей машины, служили также для того, чтобы держать ось якоря и шкивы машины.

В 1870 году, получив патент на свое изобретение, Грамм образовал «Общество производства магнитоэлектрических машин». Вскоре было налажено серийное производство его генераторов, которые произвели подлинную революцию в электроэнергетике. Обладая всеми достоинствами самовозбуждающихся машин, они вместе с тем были экономичны, имели высокий КПД и обеспечивали практически неизменный по величине ток. Поэтому машины Грамма быстро вытеснили другие электрогенераторы и получили широкое распространение в самых разных отраслях. Тогда только появилась возможность легко и быстро преобразовывать механическую энергию в электричество.

Как уже говорилось, Грамм создавал свой генератор, как динамо‑машину постоянного тока. Но когда в конце 70‑х — начале 80‑х годов XIX века резко возрос интерес к переменному току, ему не стоило большого труда переделать его для производства переменного тока. В самом деле, для этого надо было только заменить коллектор двумя кольцами, по которым скользят пружины. Сначала генераторами переменного тока пользовались только при освещении, но с развитием электрификации они стали получать все большее применение и постепенно вытеснили машины постоянного тока. Первоначальная конструкция генератора также претерпела значительные изменения. Первая машина Грамма была двухполюсной, но в дальнейшем стали применять многополюсные генераторы, в которых обмотка якоря проходила при каждом обороте мимо четырех, шести и более попеременно установленных полюсов электромагнита. В этом случае ток возбуждался не с двух сторон колеса, как раньше, но в каждой части колеса, обращенной к полюсу, и отсюда отводился во внешнюю цепь. Таких мест (а соответственно и щеток) было столько, сколько магнитных полюсов. Затем все щетки положительных полюсов связывались вместе, то есть соединялись параллельно. Точно так же поступали и с отрицательными щетками.

По мере увеличения мощности генераторов возникла новая проблема — каким образом снять ток с вращающегося якоря с наименьшими потерями. Дело в том, что при больших токах щетки начинали искрить. Кроме больших потерь электроэнергии, это оказывало вредное воздействие на работу генератора. Тогда Грамм посчитал рациональным вернуться к самой ранней конструкции электрогенератора, примененной в машине Пиксии: он сделал арматуру неподвижной, а вращаться заставил электромагниты, ведь снять ток с неподвижной обмотки было проще. Он поместил катушки якоря на железном неподвижном кольце и заставил электромагниты вращаться внутри него. Отдельные катушки он связал между собой так, чтобы все те катушки, которые в данный момент подвергались одинаковому действию электромагнитов, были соединены последовательно. Таким образом Грамм разбил все катушки на несколько групп и каждую группу употребил для доставления тока в отдельную самостоятельную цепь. Однако возбуждающие ток электромагниты необходимо было питать постоянным током, так как переменный ток не мог вызвать в них неизменной полярности. Поэтому при каждом генераторе переменного тока необходимо было иметь небольшой генератор постоянного тока, откуда ток подводился к электромагнитам при помощи скользящих контактов.


Источник: izobreti.ru

Обзор международного опыта инновационного развития

История становления инновационных экономик показывает различные примеры временных рамок, требуемых для запуска, ускорения и поддержания инновационного развития. При этом встречаются примеры стран, которые планомерно двигались к инновационному развитию, так и примеры стран, совершивших или начавших инновационный рывок под воздействием государственной политики (датой отсчета при этом, как правило, является принятие ключевого нормативно-правового акта).

В Великобритании до начала 2000-х годов не проводилось целенаправленной централизованной политики по стимулированию и развитию инноваций. В 2003 году Министерство торговли и промышленности Великобритании опубликовало стратегию правительства в сфере технологического развития, в 2004 году был создан Совет по технологическим стратегиям, который осуществляет инвестиции в создание новых технологий, поддерживает их развитие и коммерциализацию. Относительно целостная инновационная стратегия долгосрочного развития Великобритании была сформулирована лишь в 2008 году.

Инновационное развитие Японии и Швеции осуществлялось последовательно и имеет долгую историю. Тем не менее, в Швеции только в 2005-2008 гг. были определены 4 приоритетные сферы для финансирования НИОКР: медицина, биотехнологии, окружающая среда и устойчивое развитие, развитие в Швеции «центров высоких технологий» (centers of excellence), которые представляют собой соединение научно-исследовательских и коммерческих сил в интересах быстрой и эффективной коммерциализации инноваций.

В Ирландии также переход на инновационный путь развития был осуществлен сравнительно недавно. Правительство Ирландии в 2007 году выделило 8,2 млрд. евро на осуществление Стратегии науки, технологии и инноваций (Strategy for Science, Technology and Innovation), которая предполагает улучшение человеческого капитала, физической инфраструктуры, развитие науки, технологии и инноваций с помощью различных проектов.

В Южной Корее первые программы инновационного развития были запущены с 1999 года, и развитие инновационного сектора очень быстро прогрессировало.
Государственная стратегия инноваций Испании была одобрена в 2010 году. Руководство по реализации ГСИ осуществляет Министерство науки и инноваций Испании (МНИ). На реализацию ГСИ из государственного бюджета страны в 2010 году было выделено 6720 млн. евро.

Основные направления проводимой в настоящее время региональной инновационной политики Нидерландов были заданы в 2003 году. Министерство экономических отношений реализовало программу «Путь к инновациям: борьба с Лиссабонскими амбициями», призванную улучшить инновационный климат, стимулировать компании к ведению инновационной деятельности и сосредоточению большего количества ресурсов в стратегически важных сферах.

С 1998 г. во Франции действует государственный план стимулирования патентования изобретений отечественными фирмами. В 1999 году был принят Закон об инновациях и научных исследованиях, призванный реорганизовать и модернизировать национальную инновационную систему в направлении более эффективной коммерциализации научно-исследовательского потенциала. Реализация закона привела к принятию целого ряда решений правительства и специального «инновационного плана» (2002 год), цель которых заключается в создании общей правовой базы, стимулирующей развитие партнерства между государственным научным сектором и негосударственными участниками инновационного процесса. С 2007-2008 гг. предпринимались точечные налоговые меры по поддержке инвестиций в инновации.

Первые попытки реализации инновационной политики в Дании предпринимались в начале 1980-х годов, когда правительство запустило программу технологического развития, направленную на развитие информационных технологий, считавшихся одной из приоритетных областей. За 20 лет Дания пережила полномасштабное преобразование применяемой экономической политики, – традиционная краткосрочная стабилизационная политика была заменена долгосрочной структурной политикой.

Швейцарское правительство реализует программы, направленные на переход государства от индустриальной экономики к экономике, основанной на знаниях, начиная с 1950-х годов. В 90-х годах была создана структура государственных ведомств, курирующих становление экономики, основанной на знаниях, инновационной экономики, которая существует и в настоящее время. С 2007 года правительством определены приоритеты развития страны и намечены основные инновационные отрасли с перспективой промышленного внедрения, на которые выделяются основные государственные ресурсы.

Начало целенаправленного инновационного развития Германии относится к периоду после Второй мировой войны, когда основную роль в формировании национальной инновационной системы играли государственные органы, определявшие направления ведения научно-исследовательской деятельности. В начальный период послевоенного восстановления Германии особую роль сыграла помощь США по плану Маршалла, в рамках которой предоставлялось финансирование предприятиям в наиболее развитых отраслях экономики – машиностроение, автомобильная промышленность, химическая промышленность и т.д. Начиная с 1950-х гг. совместно с американскими исследователями велись совместные работы в сферах космоса, авиации и атомной энергетики, в ходе которых страна получила доступ к американским разработкам.

Финансирование субъектов инновационной деятельности в Германии началось в 1950-х гг. с программ индивидуальной целевой поддержки определенных направлений. В период 1970-х гг. начали возникать первые венчурные фонды, направленные на развитие инновационных компаний в сфере малого бизнеса.

В 1970-х гг. начали реализовываться программы частно-государственного партнерства в научно-исследовательской сфере, благодаря чему доля бюджетной системы в расходах на НИОКР сократилась с 70% в 1970-х гг. до 30% в настоящее время.

Промышленность Финляндии смогла перейти на производство товаров с большим объемом добавленной стоимости в период с середины 60-х по 80-е гг. благодаря интенсивному партнерству государства и частного сектора. Роль пионера венчурного финансирования сыграл государственный фонд Sitra, который был создан в 1980-х гг., с начала 2000-х он стал главным инвестором в биотехнологиях.

Развитие инновационной системы Канады началось в середине 1940-х гг. и было во многом связано с успехами США в той же сфере. К этому времени были созданы определенные предпосылки для развития науки и технологий – сформирована система университетского образования, где параллельно проводились научные исследования, в том числе совместно с британскими и американскими учеными и учреждены государственные органы, целенаправленно занимавшиеся развитием науки.

В настоящее время основным документом, который регулирует развитие инновационной системы в Канаде, является принятая в 2007 г. стратегия «Мобилизация науки и технологий для достижения рыночных преимуществ Канады», которая предполагает развитие следующих направлений – защита экологии, энергетика и природные ресурсы, медицина и информационные технологии.

Современная американская государственная инновационная политика была сформирована во второй половине 1990-х годов: приоритет был обозначен в 1997 году, когда президент Б. Клинтон прочитал Конгрессу доклад «Наука и технология: формируя ХХI столетие». Кроме того, в предшествовавшие принятию этой политики годы государство провело демонополизацию различных отраслей экономики – энергетики, транспорта, связи. Благодаря такому снижению влияния крупных игроков в экономике, возможность выхода на рынок получили малые инновационные компании.

Экономика Израиля вплоть до 80-х гг. развивалась преимущественно экстенсивным путем. Основой высоких темпов роста являлось использование прибывшего в страну значительного числа иммигрантов, иностранной помощи, людских и ресурсов с контролируемых арабских территорий. В середине 80-х годов начинается плавный переход на путь инновационного развития: была проведена конверсия сферы НИОКР, которая состояла в переориентации разработок двойного назначения на обеспечение нужд гражданской промышленности, относительном сокращении чисто военных исследований и поощрении притока частных капиталов в создание и коммерческое использование невоенных технологий. В 2005 году был принят закон о НИОКР, согласно которому разрешается передача за рубеж ноу-хау, полученных в результате исследований, финансируемых государством.

В рамках курса на модернизацию национальной промышленности с середины 1980-х годов инновационная политика в Китае в условиях отсутствия законодательной базы реализовывалась путем выполнения целевых программ, направленных на освоение иностранных и разработку собственных высоких технологий. В 2002 г. были утверждены два основополагающих закона, заложивших правовую базу регулирования инновационной деятельности: закон КНР «О стимулировании средних и малых предприятий» и Закон КНР «О популяризации науки и техники». В октябре 2010 г. Госсоветом КНР опубликовано «Решение об ускорении развития новых стратегических отраслей».

Бразилия с конца 90-х гг. приняла ряд законов для увеличения количества научных исследований, стимулирования инноваций в частном секторе и установления более продуктивных партнерских отношений между научными институтами и бизнесом. В 2006 г. был принят Инновационный закон, в 2005 – «Хороший» закон (Good Law), который предоставляет налоговые стимулы для осуществления частных инвестиций в НИОКР.

Согласованная государственная поддержка развития нанотехнологий в Бразилии началась с 2001 г. с созданием 4 национальных сетей по нанотехнологиям и нанонауке, которые сегодня объединяют около 40 научных института по всей Бразилии.

Первые меры по поддержке инновационного развития в Таиланде были приняты в 2007-2009 годах, когда Национальное агентство по развитию науки и технологий Таиланда (NSTDA), совместно с Федерацией промышленников Таиланда реализовало проект «Промышленно-технологичная клиника», в рамках которого была оказана поддержка 2500 предприятиям малого и среднего бизнеса в проведении научных исследований.

В Индонезии системная государственная научно-техническая, инновационная политика находится в процессе формирования, значительные средства выделяются на исследование нанотехнологий (в 2010 году – более 27 млн. долл. США).

Начало развитию собственной инновационной системы в Индии было положено вскоре после получения независимости от Великобритании в начале 1950-х гг., причем основным сектором экономики, где должны были использоваться научные разработки, должна была стать тяжелая промышленность при одновременном импорте технологий и капитала на начальном этапе. С 1974 г. государственные органы начали начало проводить политику поддержки частных научных исследований и разработок. Индийские компании, ведущие научные исследования, получали поддержку по доступу к иностранному оборудованию и сырью, а также отдельные налоговые льготы. Большое внимание с 1947 по 1990 гг. уделялось и развитию собственной системы образования.

В 1991 г. индийское правительство провозгласило новую экономическую политику, в рамках которой планировалось осуществить переход к рыночному финансированию науки, что проявилось в сокращении соответствующих госрасходов и одновременное снижение темпов развития науки и новых технологий. Такая практика была признана неудачной, в результате чего бюджетное финансирование было увеличено.

Целенаправленная политика по развитию наиболее крупного сектора инновационной системы Индии – информационных технологий – начала проводиться в начале 1970-х гг., ее целью было создание новых рабочих мест для квалифицированных специалистов с целью предотвращения «утечки мозгов» в развитые страны. С этой целью при крупных университетах начали создаваться компьютерные центры; новый виток развития сектора информационных технологий пришелся на 1980-е гг., когда была отменена процедура лицензирования, сформированы специализированные исследовательские центры, и правительством приняты законы о развитии ИТ-сферы. В 1991 г. в Индии начали создаваться специализированные технопарки по производству программного обеспечения на экспорт.

Особенности государственной инновационной политики некоторых стран


Приведенный ниже анализ особенностей государственной инновационной политики стран направлен на выявление закономерностей в применении мер стимулирования инновационной активности. В основном, особенности связаны с использованием конкретных мер, направленных на ускорение инновационного развития (различного рода льгот, финансовой поддержки, мер по улучшению взаимодействия науки и бизнеса), а также с распределением роли государства и частного сектора в данных процессах.

В Великобритании практика государственного финансирования исследований реализуется как система «двойной поддержки». Стратегическое финансирование производится через единовременные субсидии. Параллельно Департамент инноваций, университетов и компетенций финансирует Исследовательские советы, которые, в свою очередь, финансируют исследования в стране на проектной основе. Таким образом, единовременные субсидии обеспечивают стабильность и стратегические ресурсы, которые университеты могут потратить в соответствии со своими приоритетами и программами развития, в то время как проектное финансирование со стороны Исследовательских советов обеспечивает энергичную конкуренцию между разными проектами.

В Великобритании создаются многочисленные инновационные центры двух типов: ориентированные на разработку специфической технологии и продвижение ее использования (создаются в ответ на нужды или возможности бизнеса, например, Printable Electronics Technology Centre, PETEC); и сфокусированные на определенном секторе экономики или рынке (создаются для того, чтобы собрать вместе взаимодополняющие дисциплины науки, части технологической цепочки и т.п.). Подобные центры рассматриваются в качестве стратегических драйверов экономического развития на региональном уровне. Недостатком деятельности большинства таких центров инноваций и технологий является то, что они не интегрированы в национальную инновационную систему и часто не связаны с более широкими программами развития, например, с программами которые реализуются Советом по технологической стратегии.

Региональный подход к инвестициям в центры привел к высокой дисперсии инновационной деятельности и дублированию: например, на территории Великобритании на данный момент действует 8 центров инноваций и технологий, занимающихся композитными материалами.

В Ирландии роль велика государства в инновационных процессах: в частности, оно имеет решающее значение в привлечении иностранных инвестиций в развитие высокотехнологичных отраслей промышленности: одним из направлений мер по стимулированию развития наукоемких производств является выделение грантов на НИОКР, снижение ставок налогообложения для компаний, выполняющих НИОКР. Несмотря на то, что в Ирландии проживает 1% от численности населения ЕС, 25% инвестиций из США в ЕС поступают именно в Ирландию.

Государство в Ирландии инвестирует и в ряд проектов по открытию доступа развивающегося бизнеса к информационным, консультативным и образовательным ресурсам. Для поддержки потока исследователей в Ирландию правительство этой страны приняло постановление Европейского Сообщества о привлечении исследователей из третьих стран (EC Directive on Mobility of Researchers from Third Countries).

В Ирландии поддерживается ряд инициатив по развитию связей между системой высшего образования и промышленностью. Примером такой инициативы может служить учреждение Центров науки, инженерии и технологии с целью накопления и обмена знаниями, создания и использования возможностей для инноваций. Прикладные исследовательские центры при высших учебных заведениях работают с исследователями для выявления коммерческих возможностей того или иного проекта, заключения договоров с предприятиями, защиты прав интеллектуальной собственности. Кроме того, поддержка связей между академическими исследователями и промышленностью осуществляется внутри Стратегических исследовательских кластеров, которые специализируются, в основном, на био- и компьютерных технологиях.

В Дании университеты финансируются, в основном, из государственного бюджета. Взаимодействие между университетами и промышленностью в Дании развито слабее, чем во многих других странах. Важную часть датской инновационной системы составляют отраслевые научно-исследовательские институты. Они прикреплены к различным министерствам и проводят исследования согласно потребностям соответствующего министерства. Институты получают базовое финансирование из национального бюджета; они также могут получить финансирование из государственных средств, распространяемых посредством открытого конкурса через исследовательские советы, министерства или другие учреждения; а также от коммерческой деятельности.

Важной частью датской инновационной системы являются GTS-институты («Godkendt Teknologisk Service» — «утвержденный технологический поставщик услуг»), выступающие в качестве моста между государственными и частными субъектами. GTS-институты представляют собой частные независимые консалтинговые компании, которые разрабатывают и продают прикладные знания и технологические услуги для частных предприятий и государственных учреждений. GTS-институт является некоммерческой организацией, созданной Министерством науки, технологии и инноваций на период в три года. Существуют три основных направления деятельности GTS-институтов: самостоятельное развитие ноу-хау, участие в совместных проектах вместе с государственными научно-исследовательскими учреждениями и частными компаниями, а также коммерческая деятельность. Еще один из важных элементов датской системы инноваций – научные парки, соучредители инновационных инкубаторов. В стране создана мощная инновационная инфраструктура. Тем не менее, большая часть инновационной активности сводится к мелким инновациям, направленным на улучшение производственного процесса на местах.

В Швейцарии основные направления инновационной политики не претерпели существенных изменений с 2000 по 2007 гг. Ряд изменений коснулся, прежде всего, образования, научных исследований и технологического сектора. Правительство увеличивало расходы в этих секторах в среднем на 6% каждый год в период между 2004 и 2007 годами. Кроме того, правительство скорректировало направления работы Национальных центров компетенции в области научных исследований (National Centres of Competence in Research, NCCR) – NCCR, запущенные с 2004 года, стали более ориентированы на гуманитарные и социальные науки. Правительство также выделило несколько приоритетных направлений развития науки и экономики помимо NCCR – сети компетенций в составе университетов прикладных наук, повышение ценности знаний, поощрение диалога между наукой и обществом и др.

Вопросы коммерциализации инновационных разработок в Швейцарии не поддерживаются прямыми государственными инвестициями. Трансфер инновационных технологий в промышленность осуществляется в рамках существующих форм поддержки фирм, в том числе старт-апов, преимущественно в условиях технопарков, как на федеральном, так и на региональном уровне. Из-за отсутствия прямой государственной поддержки инноваций в бизнес секторе, инструменты инновационной политики, в основном, ориентированы на предложение прикладных научных исследований. Другая сложность связана с человеческим капиталом: несмотря на значительные расходы на образование, доля с высшим образованием относительно мала, сохраняется и ограниченная мобильность в рамках системы образования.

В Норвегии большое внимание уделяется взаимодействию образования и науки: существует большое количество как государственных, так и частных научно-исследовательских институтов (на них приходится почти 23% от всех расходов на научно-исследовательскую деятельность и примерно 27% всех научных исследований). Все высшие учебные заведения Норвегии обязаны проводить фундаментальные исследования и подготовку научных работников, используя работы выпускников вузов и программы докторантов. Высшие учебные заведения отвечают не только за проведение фундаментальных исследований и подготовку научных кадров, но и за коммерческое использование результатов изобретений, сделанных их сотрудниками. Доля государственных инвестиций относительно высока, как и в других странах с низкой долей R&D к ВВП (около 1,7% от ВВП).

Норвегия смогла добиться того, чтобы иностранные корпорации, работающие на местном рынке, проводили локализацию своих технологий в стране или передавали их норвежским научно-исследовательским институтам. Для этого использовались различные поощрения и вознаграждения. В результате в Норвегии сформировались судостроительные компании, ИТ-сектор, связанный с нефтегазодобычей, появились инновационные разработки в мониторинге запасов в труднодоступных местах, а также в технологиях бурения и добычи на шельфе.

Государство в Норвегии софинансирует НИОКР сырьевых компаний. Конечная цель — создание научной среды мирового уровня и накопление в Норвегии знаний в области нефтедобычи. Для поощрения развития НИОКР в промышленности в Норвегии предусмотрена система налоговых вычетов при осуществлении расходов на НИОКР. Высокие налоги на нефтедобычу в Норвегии непосредственным образом стимулируют нефтегазовые компании к разработке новых технологий, позволяющих снижать себестоимость добычи и повышать степень добычи нефти из пластов.

Инновационная политика в Нидерландах характеризуется преобладанием региональной компоненты, причем происходит смещение с поддержки отстающих северных регионов на поддержку экономических преимуществ регионов, являющихся движущей силой национального роста. К недостаткам национальной инновационной системы Нидерландов относится недостаточная плотность научно-исследовательской деятельности в голландских компаниях (1% по сравнению со средним уровнем по ОЭСР в 1.5%) и увеличивающаяся нехватка докторов наук по научно-техническим специальностям.

Участие Нидерландов в международных программах по инновационному сотрудничеству централизовано и координируется основными министерствами и агентствами в рамках их основной специализации. При организации участия в международных инновационных проектах основное внимание уделяется привлечению к исследованиям предприятий малого и среднего бизнеса, а также перспективных инновационных компаний.

В Испании основными направлениями государственной инновационной политики являются реализация проектов создания консорциумов технологических исследований (CENIT, НСКТИ), Фонд фондов и программа «Torres Quevedo». Национальные стратегические консорциумы технологических исследований (НСКТИ) представляют собой практическую форму реализации задачи улучшения взаимодействия государственных и частных организаций путем создания и совместного финансирования НСКТИ. Для получения дотаций и другой поддержки со стороны государства, формируемые НСКТИ должны удовлетворять ряду условий.

Фонд фондов объединяет фонды венчурного капитала для поддержки процессов создания и становления высокотехнологичных компаний. Участниками фонда являются государственные и частные компании, присутствие частного сектора: более 30%. Программа «Torres Quevedo», по которой осуществляется насыщение частного сектора университетскими кадрами. По программе финансируется заключение контрактов с докторами наук и технологами для поддержки исследовательских проектов в фирмах.

В Израиле в качестве одного из основных инструментов инновационной политики работают международные фонды поддержки инноваций. Мощным инструментом выращивания собственных прибыльных проектов, также с успехом используемым Израилем, является система грантов на НИОКР, в которых государство софинансирует проекты коммерциализации технологий в разных пропорциях в зависимости от стадии развития проекта. Можно выделить следующие важные особенности этой системы: доступность грантов, быстрота принятия решения о финансировании.

В университетах Израиля наряду с учебной деятельностью проводятся на коммерческой основе научные и прикладные исследования в интересах других заинтересованных организаций и учреждений. Практически в каждом ВУЗе есть подразделение, задачей которого является коммерциализация проектов, созданных на базе ВУЗа.

Инициативы государства в области инновационного развития в последнее время включают в себя: запуск нескольких новых программ, направленных на поддержку малого и среднего бизнеса и традиционных отраслей; создание фонда развития нанотехнологий (21 млн. евро) и биотехнологий (25 млн. евро); запуск программы разработки и коммерциализации технологий обработки воды и развитие других инструментов исследований в сфере гидрологии и возобновляемых источников энергии.

В Китае с 1980-х годов значительную роль в развитии инновационного бизнеса играют различные виды льготных административно-территориальных формирований: специальные экономические зоны, зоны торгово-экономического развития, промышленные парки и др. Указанные институты стали мощным инструментом привлечения к сотрудничеству иностранных компаний и специалистов, для которых применяются специальные льготы.

Активно вовлекается в инновационную деятельность и квалифицированная рабочая сила: важной составляющей ознакомления с зарубежными инновационными достижениями является направление национальных кадров на обучение за границу. В 2009 г. по этой линии получили образование 51 тыс. граждан КНР, дополнительно открыты 14 новых зарубежных каналов получения высшего образования. Кроме того, в течение 2009 года были привлечены к работе в КНР в общей сложности 480 тыс. иностранных специалистов научно-технического профиля.

В Южной Корее изначально модернизация была построена на заимствовании зарубежных технологий, которое происходило в разных формах: контракты «под ключ», лицензирование, консультативные услуги. Изучение иностранного опыта происходило, главным образом, путем создания совместных венчурных фирм с японскими партнерами. В настоящее время, несмотря на то, что Корея по многим высокотехнологичным позициям лидирует в мировом экспорте, страна по-прежнему во многом зависит от импортной техники по причине недостаточного развития собственных базовых технологий.

В 1998 году правительство провело реструктуризацию государственных исследовательских центров, создавая конкурентную среду. С этого момента исследовательские институты предоставляли спин-оффам офисные площадки и лаборатории для проведения исследований. Одной из отличительных особенностей инновационного развития Южной Кореи является целенаправленная поддержка, в основном, именно крупных компаний. В настоящее время, напротив, разукрупнение, а в ряде случаев ликвидация финансово-промышленных корпораций (чеболей) признается одним из главных успехов посткризисной адаптации и структурной реформы Южной Кореи.

Корейская патентная система считается одной из самых результативных в мире. Корейское ведомство по интеллектуальной собственности (KIPO) с 1997 года переориентировалось на заимствование принципов регулирования патентной деятельности США. Патентная полтика сыграла важную роль в развитии малого предпринимательства и капитализации университетов. Ранее профессорам необходимо было передавать свои патенты правительств, т.к. сделанные в государственных институтах изобретения считались достоянием Республики. Пересмотр патентных прав облегчил технологию передачи патентов через юридическое лицо.

В Бразилии государственный сектор всегда доминировал в финансировании науки и технологий при возрастающей роли частного сектора (к 2005 г. доля частного сектора составила 50%). Тем не менее, 80% исследовательских проектов осуществляются в государственных университетах и исследовательских институтах. В целом, инновационное развитие происходит преимущественно благодаря государственной политике.

Кроме налогового стимулирования R&D, субвенций и софинансирования процентных ставок, важным инструментом в сфере финансового содействия инновациям, применявшимися в 1990-х и 2000-х гг., было создание отраслевых фондов, которые направляют часть средств, полученных от налогообложения ключевых отраслей, на R&D проекты, выбранные государственным комитетом. Около двух третей средств отраслевых фондов используется совместными частно-государственными компаниями.

К недостаткам инновационной политики Бразилии можно отнести низкий уровень конвертации знаний в инновационную продукцию, сосредоточенность инновационной системы на академических научных исследованиях, а также недостаточную координацию между процессами научных исследований, разработки технологий, производством и коммерциализацией разработок. Кроме того, в Бразилии практически полностью отсутствует политика по привлечению высококвалифицированной иностранной рабочей силы и взаимодействию с диаспорой.

Среди характерных особенностей развития американской инновационной сферы следует выделить фактически независимое от федеральных государственных органов появление основных институтов инновационной сферы (технопарков и венчурных фондов). Второй особенностью инновационной сферы США является исключительно высокая активность малых инновационных компаний. Это в немалой степени связано с существованием специальных государственных программ поддержки таких фирм, а также с развитостью и доступностью венчурного капитала – основного источника средств.

Другими особенностями американской инновационной системы являются значительная доля образованных иммигрантов и высокий уровень конкуренции среди всех участников инновационной сферы. В качестве слабой стороны инновационной системы в США отмечается необходимость формирования законодательной базы для регулирования финансирования малых предприятий.

В Таиланде большое внимание уделяется развитию нанотехнологий. Национальное агентство по нанотехнологиям Таиланда (NANOTEC) разработало концепцию по превращению страны к 2013 году в один из региональных центров юго-восточной Азии по развитию нанотехнологий. Начато создание сети высокотехнологичных парков, включающих в себя местные университеты, государственные и частные НИИ, в том числе с привлечением зарубежных ученых, деятельность которых будет сфокусирована на трех основных областях – создании новых наноматериалов, развитии нанобиотехнологий и наноэлектроники. Развитие биотехнологий связано с созданием в стране Национального центра генной инженерии и биотехнологий (BIOTEC).

Республика Индонезия стремится к выходу на качественно более высокий уровень научно-технического развития, однако по-прежнему испытывает острую нехватку квалифицированных специалистов и финансовых средств на НИОКР. Руководство страны активно перенимает опыт создания технопарков, промышленных парков, особых экономических зон с акцентом на развитие высокотехнологичных производств и научно-технических разработок. Однако все они еще находятся на разных стадиях развития. Одним из основных препятствий является бюрократия и недостаточное финансирование.

В Индонезии исследованиями в сфере нанотехнологий занимаются находящиеся в системе Министерства исследований и технологий Институт естественных наук (LIPI), Национальное агентство по атомной энергии (BATAN), Национальное аэрокосмическое агентство (LAPAN), Агентство по исследованию и внедрению технологий (BPPT), Исследовательский центр при Министерстве промышленности, а также ряд государственных и частных исследовательских институтов — в общей сложности, более 120 организаций. Сферы исследований касаются, прежде всего, наноматериалов, далее идут нанофармацевтика, энергетика, нанобиотехнологии и наноэлектроника. Среди проблем, с которыми сталкивается Индонезия, на первом месте стоит нехватка информации, на втором – конкретных прикладных технологий, на третьем – дефицит специалистов, далее – недостаточное финансирование.

В инновационной сфере Бельгии серьезным событием в поддержку инноваций на федеральном уровне стало создание «Группы высокого уровня 3%» (High Level Group 3% / Haut conseil 3%), состоящей из промышленников, ученых и членов научно-исследовательских организаций. Инновационный процесс в Бельгии стимулируется кластерной политикой, при этом в процесс трансфера технологий вовлекаются как ученые, так и студенты; работают эффективные региональные программы поддержки инновационной деятельности (Фландрия). Предприятиям, участвующим в инновационном процессе, по федеральному закону облагаемый налог дохода может снижаться на 110 %.

Кроме того, в Королевстве существует закон об инвестициях, согласно которому бюджетные средства (до 150 млн. евро) для трансферта технологий привлекаются через университеты и НИИ. Из научно-технического бюджета около 150 млн. евро предусматривается на внедрение результатов исследований и разработок в промышленность. В результате доля предприятий, осуществляющих технологические инновации, составляет порядка 60% от общего числа предприятий.

В целях стимулирования компаний и научных центров к проведению инновационной политики, выделяются беспроцентные кредиты и субсидии, размер софинансирования со стороны которых может достигать 25%. Помимо пристального внимания к трансферу технологий, поддержка оказывается и фундаментальным исследованиям. В Бельгии нет специального регулирования деятельности технопарков, хотя многие из них эффективно функционируют.

Инновационный потенциал Австрии характеризуется высоким уровнем расходов на НИОКР, высокой степенью зависимости от государственного финансирования (высока доля предприятий, получающих государственные субсидии на инновационную деятельность) и при этом – недостатком кадров и низкой отдачей от новых разработок. В последние годы в Австрии были усовершенствованы налоговые механизмы, призванные стимулировать научно-исследовательскую и инновационную деятельность предприятий. Так, за произведённые расходы на исследования и экспериментальное развитие австрийским налоговым законодательством предоставляются вычеты из базы налога на прибыль в размере 25% от произведённых расходов на исследования и внедрение новых технологий, за расходы на образование – 20% от произведённых расходов. Сдерживающими факторами, по-прежнему, остаются низкая доля выпускников с высшим и высшим техническим образованием, а также значительное отставание в области развития венчурного финансирования.

При продвижении на зарубежные рынки высокотехнологичной продукции, особенно при реализации крупных инфраструктурных проектов, австрийские предприятия во многих случаях выступают в составе кластеров – объединений предприятий. Такие кластеры организуются на базе передовых предприятий в секторах промышленности, в первую очередь, связанных с развитием инфраструктуры, где конкурентные позиции австрийских фирм на международных рынках сильны. Это позволяет также обеспечить выход на рынок большого числа малых и средних фирм, самостоятельное участие которых в крупных инфраструктурных проектах невозможно. В настоящее время существует четыре таких кластера: Austria Rail Engineering (ARE), Austrian Power and Environment Technology (APET), Austrian Health Care System (AHS), Austrian Technology Corporation (ATC).

Кроме того, в Австрии существует достаточно большое число различных форм организации деловых, научно-исследовательских и производственных центров – специализированных научно-технологических бизнес-центров, бизнес-инкубаторов, компетенц-центров, импульс-центров и т.п.

Инновационная деятельность в Финляндии регулируется Постановлением Правительства о Совете по политике в области науки
Читать дальше

Электрическая лампочка от и до наших дней

История инноваций
В последние десятилетия XIX века в жизнь многих европейских городов вошло электрическое освещение.

Появившись сначала на улицах и площадях, оно очень скоро проникло в каждый дом, в каждую квартиру и сделалось неотъемлемой частью жизни каждого цивилизованного человека. Это было одно из важнейших событий в истории техники, имевшее огромные и многообразные последствия. Бурное развитие электрического освещения привело к массовой электрификации, перевороту в энергетике и крупным сдвигам в промышленности. Однако всего этого могло и не случиться, если бы усилиями многих изобретателей не было создано такое обычное и привычное для нас устройство, как электрическая лампочка. В числе величайших открытий человеческой истории ей, несомненно, принадлежит одно из самых почетных мест.

В XIX веке получили распространение два типа электрических ламп: лампы накаливания и дуговые. Дуговые лампочки появились немного раньше. Свечение их основано на таком интересном явлении, как вольтова дуга. Если взять две проволоки, подключить их к достаточно сильному источнику тока, соединить, а затем раздвинуть на расстояние нескольких миллиметров, то между концами проводников образуется нечто вроде пламени с ярким светом. Явление будет красивее и ярче, если вместо металлических проводов взять два заостренных угольных стержня. При достаточно большом напряжении между ними образуется свет ослепительной силы.

Впервые явление вольтовой дуги наблюдал в 1803 году русский ученый Василий Петров. В 1810 году то же открытие сделал английский физик Деви. Оба они получили вольтову дугу, пользуясь большой батареей элементов, между концами стерженьков из древесного угля. И тот, и другой писали, что вольтова дуга может использоваться в целях освещения. Но прежде надо было найти более подходящий материал для электродов, поскольку стержни из древесного угля сгорали за несколько минут и были малопригодны для практического использования. Дуговые лампы имели и другое неудобство — по мере выгорания электродов надо было постоянно подвигать их навстречу друг другу. Как только расстояние между ними превышало некий допустимый минимум, свет лампы становился неровным, она начинала мерцать и гасла.

Первую дуговую лампу с ручным регулированием длины дуги сконструировал в 1844 году французский физик Фуко. Древесный уголь он заменил палочками из твердого кокса. В 1848 году он впервые применил дуговую лампу для освещения одной из парижских площадей. Это был, короткий и весьма дорогой опыт, так как источником электричества служила мощная батарея. Затем были придуманы различные приспособления, управляемые часовым механизмом, которые автоматически сдвигали электроды по мере их сгорания.

Понятно, что с точки зрения практического использования желательно было иметь лампу, не осложненную дополнительными механизмами. Но можно ли было обойтись без них? Оказалось, что да. Если поставить два уголька не друг против друга, а параллельно, притом так, чтобы дуга могла образовываться только между двумя их концами, то при этом устройстве расстояние между концами углей всегда сохраняется неизменным. Конструкция такой лампы кажется очень простой, однако создание ее потребовало большой изобретательности. Она была придумана в 1876 году русским электротехником Яблочковым, который работал в Париже в мастерской академика Бреге.

Свеча Яблочкова состояла из двух стержней, изготовленных из плотного роторного угля, расположенных параллельно и разделенных гипсовой пластинкой. Последняя играла двоякую роль, так как служила и для скрепления углей между собой и для их изоляции, позволяя вольтовой дуге образовываться лишь между верхними концами углей. По мере того как угли сверху обгорали, гипсовая пластинка плавилась и испарялась, так что кончики углей всегда на несколько миллиметров выступали над пластинкой.

Свечи Яблочкова привлекли к себе всеобщее внимание и наделали много шуму. В 1877 году с их помощью было впервые устроено уличное электричество на Avenue de L'Opera в Париже. Всемирная выставка, открывшаяся в следующем году, дала возможность многим электротехникам познакомиться с этим замечательным изобретением. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира. Эти лампы любопытны еще и тем, что требовали для себя исключительно переменного тока, так как скорость сгорания положительного и отрицательного электродов в них была неодинаковой и при постоянном токе надо было делать положительный электрод толще. Именно для Яблочкова Грамм изготовил свой первый генератор переменного тока. Но наряду с достоинствами свечи Яблочкова имели свои недостатки. Главное неудобство заключалось в том, что угли в них сгорали очень быстро — свеча средней величины светила не более двух часов.

Этот недостаток, впрочем, был присущ и многим другим дуговым лампам. Не раз у изобретателей являлась мысль заключить вольтову дугу в лишенную кислорода атмосферу. Ведь благодаря этому лампа могла бы гореть значительно дольше. Долгое время эти попытки не удавались, так как пытались выкачать воздух целиком из всей лампы. Американец Джандус первый придумал помещать под купол не всю лампу, а только ее электроды. При возникновении вольтовой дуги кислород, заключенный в сосуде, быстро вступал в реакцию с раскаленным углеродом, так что вскоре внутри сосуда образовывалась нейтральная атмосфера. Хотя кислород и продолжал поступать через зазоры, влияние его сильно ослаблялось, и такая лампа могла непрерывно гореть около 200 часов.

Но даже в таком усовершенствованном виде дуговые лампы не могли получить достаточно широкого распространения. Вольтова дуга представляет собой очень сильный источник света. Яркость ее горения невозможно уменьшить ниже некоторого предела. Поэтому дуговые лампы использовались для освещения больших залов, вокзалов или площадей. Но они были совершенно непригодны для применения в маленьких жилых или рабочих помещениях.

Намного удобнее в этом смысле были лампочки накаливания. Устройство их всем известно: электрический ток, проходя через тонкую нить, раскаляет ее до высокой температуры, благодаря чему она начинает ярко светиться. Еще в 1820 году французский ученый Деларю изготовил первую такую лампу, в которой накаливаемым телом служила платиновая проволока. После этого в течение полувека лампы накаливания почти не использовались, поскольку не могли найти подходящего материала для нити. Поначалу наиболее удобным казался уголь. В 1873 году русский электротехник Лодыгин сделал лампочку с нитью из роторного угля. Он же первый начал откачивать из баллона воздух. В конце концов ему удалось создать первую лампочку накаливания, получившую некоторое практическое применение, но она оставалась еще очень несовершенной. В 1878 году американские электротехники Сойер и Ман нашли способ изготавливать маленькие угольные дуги небольшого сечения путем обугливания картона в графитовом порошке. Эти дуги заключали в стеклянные колпачки. Однако и эти лампочки были очень недолговечны.

В 1879 году за усовершенствование электрической лампочки взялся знаменитый американский изобретатель Эдисон. Он понимал: для того, чтобы лампочка светила ярко и долго и имела ровный немигающий свет, необходимо, во‑первых, найти подходящий материал для нити, и, во‑вторых, научиться создавать в баллоне сильно разреженное пространство. Было проделано множество экспериментов с различными материалами, которые ставились со свойственным для Эдисона размахом. Подсчитано, что его помощники опробовали не менее 6000 различных веществ и соединений, при этом на опыты было израсходовано свыше 100 тысяч долларов. Сначала Эдисон заменил ломкий бумажный уголек более прочным, приготовленным из угля, потом стал делать опыты с различными металлами и наконец остановился на нити из обугленных бамбуковых волокон. В том же году в присутствии трех тысяч человек Эдисон публично демонстрировал свои электрические лампочки, осветив ими свой дом, лабораторию и несколько прилегающих улиц. Это была первая лампочка с продолжительным сроком службы, пригодная для массового производства. Но поскольку изготовление нитей из бамбука оказалось достаточно дорогим, Эдисон разработал новый способ выделки их из специальным образом обработанных волокон хлопка. Сначала хлопок помещали в горячий хлорно‑цинковый раствор, где он постепенно растворялся. Полученную жидкость сгущали с помощью насоса до тестообразного состояния и выдавливали через тонкую трубку в сосуд со спиртом. Здесь она превращалась в тонкую нить и наматывалась на барабан. Полученную нить путем нескольких промежуточных операций освобождали от хлорно‑цинкового раствора, сушили, разрезали, заключали в v‑образные формы и обугливали в печи без доступа воздуха. Затем на нити напыляли тонкий слой угля. Для этого их помещали под колпак, заполненный светильным газом, и пропускали через них ток. Под действием тока газ разлагался, и на нити осаждался тонкий слой углерода. После всех этих сложных операций нить была готова для употребления.

Процесс изготовления лампочки тоже был очень сложным. Нить помещали в стеклянный колпачок между двумя платиновыми электродами, вплавленными в стекло (дорогой платиной приходилось пользоваться потому, что она имела одинаковый со стеклом коэффициент теплового расширения, что было очень важно для создания герметичности). Наконец, с помощью ртутного насоса из лампочки выкачивали воздух, так что в ней оставалось не более одной миллиардной того воздуха, который содержался в ней при нормальном давлении. Когда выкачивание заканчивалось, лампочку запаивали и насаживали на цоколь с контактами для вкручивания в патрон (и патрон, и цоколь, а также многие другие элементы электрического освещения, сохранившиеся без изменений до наших дней — выключатели, предохранители, электрические счетчики и многое другое — были также изобретены Эдисоном). Средняя долговечность лампочки Эдисона составляла 800‑1000 часов непрерывного горения.

Почти тридцать лет лампочки изготавливались описанным выше способом, но будущее было за лампочками с металлической нитью. Еще в 1890 году Лодыгин придумал заменить угольную нить металлической проволокой из тугоплавкого вольфрама, имевшей температуру накала 3385 градусов. Однако промышленное изготовление таких лампочек началось только в XX веке.


Источник: izobreti.ru
 
Российский изобретатель взглянул по-новому на лампу накаливания и предложил альтернативу ее дальнейшего использования.

Российский изобретатель, старший научный сотрудник Московского авиационного института Юрий Макаров считает, что электрическая лампа накаливания еще не исчерпала себя и ее стоит модернизировать, благодаря чему она будет достаточно эффективна, дешева и долговечна.

Хронология открытий


Несмотря на свою простоту и дешевизну, лампа накаливания, именуемая в народе «лампочкой Ильича», обладает очень серьезным недостатком – для образования светового потока она использует только 5% потребляемой энергии, а все остальное превращает в тепло. Однако этот технико-технологический шедевр русского изобретателя Лодыгина, продавшего в 1906 году свой патент на вольфрамовую нить американской компании General Electric, исправно служит людям более века.

В середине ХХ века появились более экономичные источники света – газоразрядные ртутные люминесцентные лампы «дневного» света (РЛЛ), которые прижились, несмотря на массу недостатков. Во-первых, РЛЛ мерцают с частотой 50 Гц, что повышает утомляемость пользователей. Во-вторых, их начинка – вреднейшая для человека ртуть. В Европе и Америке есть программы по утилизации таких ламп, но у нас в стране, как правило, отслужившие колбы летят в обычные мусорные контейнеры и вывозятся на свалки, а ведь в каждой лампе РЛЛ содержится 2 г ртути. Если учесть, что их выпускают 1,5 млрд в год, то на помойки ежегодно попадает около 2000 т ядовитого металла.

Сегодня, как более экономичные, рекламируются компактные ртутные люминесцентные лампы (КЛЛ) со спиральными трубками. На электроэнергии вы сэкономите, а вот на покупке самих ламп можно разориться. Стоит КЛЛ минимум 100 рублей за штуку. Это связано с тем, что в них есть так называемый «электронный балласт», находящийся в цоколе и состоящий из четырех диодов, трех конденсаторов, дросселя и микроконтроллера. К тому же, утверждение о том, что КЛЛ служат в 3-4 раза дольше ламп накаливания, сильно преувеличено. Поскольку КЛЛ обладают теми же недостатками, что и РЛЛ, эксперты потребительского рынка Европы советуют не использовать такие лампы для чтения и держать их подальше от детей. Представитель Федерации немецких инженеров Андреас Киршнер пояснил, что вокруг светящейся спиральной трубки возникает электрический смог, и такие лампы нельзя использовать в непроветриваемых помещениях. Если это действительно так, то гигантскую индустрию «энергосберегающих» ламп очень скоро ждет неминуемый крах. А что же взамен?

В качестве альтернативы предлагаются светодиодные лампы. Но их розничная цена на порядок выше люминесцентных. И это пока все, что предлагает современная наука! Кроме того, существует вполне реальная проблема будущего для немалого количества ламповых заводов, которым уже запретили выпускать транжирящие попусту электроэнергию лампочки в 100 Вт. Чтобы как-то обойти этот запрет, заводы начали выпуск 95-ваттных лампочек. Но это ли решение проблемы? Как насытить рынок эффективной и доступной по цене продукцией?
Новый источник света


Между тем, уже есть источник света, лишенный многих недостатков, присущих уже существующим лампам. Его придумал Юрий Васильевич Макаров, старший научный сотрудник Московского авиационного института. Лампа Макарова (коллеги изобретателя назвают ее в шутку «лампочкой ВасИльича») выполнена на базе стандартной электролампочки накаливания с металлическим цоколем, с той лишь разницей, что внутри основной колбы нить накаливания помещена еще в одну тонкостенную колбу, расположенную в зоне максимальных температур (1000-2000оС) и выполненную из металлической сетки или жаростойкой ткани (асбест, углеткань). На эту колбу равномерно нанесен слой высокотемпературного люминофора. После включения такой лампы спираль почти мгновенно разогревает люминофор до 1500оС, и он превращает поглощаемую тепловую энергию в световое излучение.

В качестве высокотемпературного люминофора – вещества, которое под воздействием температуры начинает светиться, могут использоваться, например, сульфид цинка, активированный катионами меди, или соли натрия и калия, активированные катионами других металлов. Яркость лампы в целом обещает быть в 2-3 раза больше яркости спирали, разогревающей люминофоровую колбу. Поэтому светоотдача новой лампочки мощностью 40 Вт будет эквивалентна светоотдаче обычной лампы накаливания мощностью примерно 150 Вт. При этом экономия энергии составит 70-80%.

Для организации массового выпуска новых ламп накаливания с абсолютно безвредной термической люминесценцией потребуется лишь минимальная модернизации существующего лампового производства, уверен изобретатель. Стоимость одной новой лампочки по расчетам Юрия Макарова не превысит 10 рублей.

На снимках:

1. Светодиодная лампа «Оптолюкс»

2. Компактная люминесцентная лампа

3. Обычная лампа накаливания (60 Вт) и компактная люминесцентная лампа (11 Вт) одинаковой светоотдачи, справа – экспериментальная лампа Макарова (в ней сетка с люминофором помещена снаружи светильника, что не дает ей возможность нагреваться до оптимальной температуры) мощностью 60 Вт


Источник: Наука и жизнь

Обнинская атомная электростанция – первая в мире АЭС

История инноваций
АЭС была построена в поселке Обнинское Калужской области, ныне – город Обнинск.

Идеи использования ядерных установок для производства электроэнергии появились у советских ученых-атомщиков еще во второй половине 40-х годов. В начале 1950 года Игорь Курчатов и Николай Доллежаль доложили о результатах исследований и конструкторских работах по применению атомных станций. Уже в мае этого же года вышло первое постановление правительства о сооружении в районе нынешнего Обнинска атомной станции. Так было положено начало эре использования «мирного» атома в СССР.

Пуск первой в мире атомной электростанции состоялся 26 июня 1954 года, официальная церемония – 27 июня. Была создана специальная комиссия, отслеживавшая состояние оборудования станции. 22 июля 1954 года под руководством Курчатова состоялась выездная сессия научно-технического совета, созданного при министерстве. В докладах, сделанных в ее рамках, было указано на многочисленные технологические нарушения и поломки, выявленные в ходе эксплуатации. Так, на трубопроводах подачи охлаждающей воды и каналах систем управления и защиты (СУЗ) возникли массовые течи, система охлаждения стержней и каналов СУЗ оказалась недостаточно эффективной, в реакторном газе (гелии) было обнаружено большое количество пара, что приводило к значительному повышению температуры графитовой кладки, дренаж с нижней плиты реактора составлял до 350 литров в час, и многое другое. При таком состоянии установки о ее эксплуатации не могло быть и речи.

Был проведен ремонт, предложены новые проектные решения и 25 октября 1954 года при мощности реактора 27 МВт (90%) турбогенератор был выведен на проектную мощность. На установке начались «рабочие будни» – детальное изучение ее характеристик, усовершенствование оборудования и систем с целью повышения надежности, реализация экспериментальных программ по проектам новых АЭС.

Обнинская атомная электростанция проработала почти 48 лет, вплоть до 29 апреля 2002 года, и была выведена из эксплуатации в связи с научно-технической нецелесообразностью ее дальнейшей работы. В настоящее время на базе АЭС создан музей атомной энергетики.

При подготовке материала использованы данные сайта «Отраслевой мемориальный комплекс Первая в мире атомная станция».


Источник: SmartGrid.ru

Электрический счетчик: от медной пластины до «умного» учета

История инноваций
О предпосылках появления первых приборов учета энергии.

В первой половине 19 века было сделано множество открытий в области электромагнетизма. В 1820 году французский ученый Андре-Мари Ампер открыл явление взаимодействия электрических токов. В 1827 году немец Георг Симон Ом установил зависимость между силой тока и напряжением в проводниках. В 1831 году англичанин Майкл Фарадей открыл закон электромагнитной индукции, который лег в основу принципа действия генераторов, двигателей и трансформаторов.

Во второй половине того же столетия через довольно короткие промежутки времени были созданы лампа, динамо-машина, двигатель, трансформатор, счетчик и гидротурбина. Все эти открытия и изобретения подготавливали почву и одновременно порождали необходимость в создании электросчетчика.

В 1861 году венгр Аньош Йедлик и независимо от него в 1867 году немец Вернер фон Сименс придумали модели динамо-машины. Это дало возможность вырабатывать электроэнергию в больших количествах. Первой областью массового применения электричества стало освещение. Поскольку электроэнергию начали продавать, возникла необходимость определить цену. Однако было неясно, в каких единицах следует вести учет, и какие принципы измерения были бы наиболее удобными.

В 1872 году американец Самюэль Гардинер запатентовал счетчик часов работы лампы. Прибор измерял время, в течение которого электроэнергия подавалась в точку нагрузки, при этом все лампы, подключенные к этому счетчику, контролировались одним выключателем. Однако с появлением электрической лампочки Эдисона стало практиковаться разветвление цепей освещения, и счетчик Гардинера вышел из употребления.

В 1881 году Томас Алва Эдисон запатентовал «электрический», а по принципу работы – электролитический счетчик. Прибор использовал электрохимический эффект тока: он содержал электролитическую ячейку, куда в начале расчетного периода помещалась точно взвешенная пластинка меди. Ток, проходящий через электролит, вызывал осаждение меди. В конце расчетного периода, медную пластинку взвешивали снова, и разница в весе отображала количество электричества, которое прошло сквозь нее. Этот счетчик был калиброван таким образом, что счета можно было выставлять в кубических футах газа, поскольку изобретатель считал, что электричество нужно продавать как газ (последний широко использовался в то время для освещения). Однако считывание показаний было сложным даже для энергетической компании, а для потребителя – совершенно невозможным. Позднее Эдисон добавил счетный механизм для удобства считывания показаний счетчика.

Существовали и другие электролитические счетчики, такие как водородный счетчик немецкой компании Siemens Shuckert и ртутный счетчик Йенского стекольного завода Schott&Gen. Jena. Устройства этого типа измеряли только ампер-часы и не могли использоваться при колебаниях напряжения.

Следующим типом приборов учета потребленной электроэнергии стали маятниковые счетчики. Принцип их работы основывался на создании некоторого движения – колебания или вращения – пропорционального энергии, которое, в свою очередь, могло бы запустить счетный механизм для отображения показаний счетчика.

Принцип работы маятникового счетчика был описан американцами Вильямом Эдвардом Эйртоном и Джоном Перри в 1881 году. Обособленно от них в 1884 году немец Германн Арон сконструировал маятниковый счетчик. Прибор позволял измерять ампер-часы или ватт-часы, но его можно было использовать исключительно для сетей постоянного тока. Первые счетчики содержали два часовых механизма и из-за этого стоили очень дорого. Постепенно их вытеснили моторные счетчики. В 1889 году американец Элиху Томсон разработал свой «самопишущий ваттметр» для компании General Electric.

На эволюции электросчетчиков очень сильно отразилось изобретение трансформаторов. В середине 19 века было еще неясно, какие системы окажутся эффективней – системы постоянного или переменного тока. Однако вскоре выявился один важный недостаток систем постоянного тока – напряжение нельзя было изменить, а, следовательно, было невозможно создавать более крупные системы. В 80-х годах 19 века были созданы первые трансформаторы. Начиная с 20 века системы переменного тока постепенно вытеснили прочие. Соответственно, для учета электроэнергии потребовалось решить новую задачу – измерение электроэнергии переменного тока.

В 1885 году итальянец Галилео Феррарис сделал важное открытие: два не совпадающих по фазе поля переменного тока могут заставить вращаться сплошной ротор, такой как диск или цилиндр. В 1888 году независимо от него американец хорватского происхождения Никола Тесла тоже обнаружил вращающееся электрическое поле. Эти открытия привели к появлению индукционных счетчиков. В 1888 году Оливер Шелленбергер разработал счетчик количества электричества для переменного тока. Противодействующий момент создавался винтовым механизмом. В 1889 году венгр Отто Титуц Блати запатентовал «электрический счетчик для переменных токов». Аппараты крепились на деревянной основе, делали 240 оборотов в минуту и весили 23 кг. К 1914 году вес устройства снизился до 2,6 кг.

Индукционные счетчики, основанные на принципах Феррариса и Блати, все еще производятся в больших количествах и выполняют основную работу по учету энергии, благодаря их низкой стоимости и отличным показателям надежности.

По мере распространения электричества появилась концепция многотарифного электросчетчика с локальным или дистанционным управлением, счетчика максимальной нагрузки, счетчика предварительно оплаченной электроэнергии.

В 1934 году компания Landis&Gyr разработала счетчик «Тривектор», измеряющий активную и реактивную энергию и потребляемую мощность.

Электронные технологии нашли применение в учете энергии в 1970-х годах, с появлением первых аналоговых и цифровых интегральных микросхем. Сначала были разработаны точные стационарные счетчики. В 1980-х годах были разработаны гибридные счетчики, состоящие из индукционных счетчиков и электронных тарифных единиц. Эта технология использовалась относительно недолго.

Идея считывания показаний счетчиков на расстоянии появилась в 1960-х годах. Первоначально использовалась дистанционная импульсная передача, но постепенно вместо нее стали использовать различные протоколы и средства передачи данных. В настоящее время счетчики с развитыми функциональными возможностями основываются на новейших электронных технологиях, с применением цифровой обработки сигналов, причем большинство функций предусмотрено встроенным программным обеспечением.

При подготовке материала использована информация сайта Izmerenie.ru.


Источник: SmartGrid.ru

Солнечная батарея: от Генриха Герца до наших дней

История инноваций
Из истории создания устройств, преобразующих солнечный свет в электроэнергию.

Впервые на взаимосвязь света и электричества обратил внимание немецкий физик Генрих Герц. Он заметил, что разряд между двумя электродами происходит гораздо легче под ультрафиолетовым светом.

Экспериментально доказать эту зависимость Герцу удалось в 1886-1889 годах. Ученый показал, что электромагнитные волны ведут себя точно так же, как и световые, – распространяются прямолинейно, образуя тени. Он создал гигантскую призму из двух тонн асфальта, которая преломляла электромагнитные волны, как стеклянная призма – световые. Однако Герц не стал подробно изучать эту тему.

Данные немецкого ученого заинтересовали профессора физики Московского университета Александра Григорьевича Столетова. В феврале 1888 года он приступил к серии опытов по изучению этого таинственного явления. 26 февраля в экспериментальной установке Столетова был выработан первый электрический ток, рожденный световыми лучами. Фактически это и был первый фотоэлемент.

В конце 19 века на Всемирной выставке в Париже изобретатель Огюст Мушо продемонстрировал инсолятор. Прибор при помощи зеркала фокусировал лучи на паровом котле с помощью параболического зеркала диаметром 5 м. Котел приводил в действие печатную машину, делавшую по 500 оттисков газеты в час.

В начале 20 века Альберт Эйнштейн создал теорию фотоэффекта (испускание электронов веществом под действием света или любого другого электромагнитного излучения). Тогда же были разработаны фотоэлементы на основе селена, потом более совершенные – таллиевые. Однако все они обладали очень малым коэффициентом полезного действия и нашли применение только в устройствах управления, например, в турникетах на пассажирских станциях.

В 30-е годы 20 века сотрудники Физико-технического института АН СССР в Ленинграде Борис Коломиец и Юрий Маслаковец создали медно-таллиевые фотоэлементы с рекордным для того времени КПД – 1%. Институтом тогда руководил академик Абрам Федорович Иоффе, имя которого сегодня носит это учебное заведение.

Следующим шагом в развитии гелиоэнергетики стало создание кремниевых фотоэлементов. Уже первые их образцы имели КПД 6%. Это позволило ученым задуматься о практическом получении электрической энергии из солнечных лучей.

Первая солнечная батарея была создана в 1953 году. Поначалу это была просто демонстрационная модель – применение на практике не представлялось возможным из-за малой мощности. Однако конструкция стала использоваться в космической отрасли – существовавшие в то время аккумуляторы, в которых можно было бы запасти электрическую энергию, были очень громоздки и тяжелы, и большая часть полезной нагрузки корабля ушла бы на перевозку источников энергии. Конструкторы бились над задачей создания пригодной для использования в космосе электростанции, работающей без топлива. С этой точки зрения фотопанель оказалась подходящим решением. Уже третий советский искусственный спутник Земли, выведенный на орбиту 15 мая 1958 года, был оснащен солнечной батареей.

Следующий шаг в освоении энергии солнца был сделан в 1970-х годах. Ученые начали подробно исследовать фотоэлектрические свойства полупроводников и обнаружили, что они гораздо эффективнее металлов преобразуют солнечный свет в электрическую энергию.

Сегодня солнечные батареи постепенно входят в быт. Уже никого не удивляют калькуляторы, электронные часы, радиоприемники, работающие от небольшой фотопанели, вмонтированной в корпус прибора. По всему миру реализуются масштабные проекты строительства солнечных электростанций мощностью до нескольких сот мегаватт.

При подготовке материала использована информация Википедии, solarsity.ru.


Источник: SmartGrid.ru
Фото: mapia.ua

Ветер на службе человечества

История инноваций
Из истории использования ветряков и появления ветроэнергетики.
 
То, что энергия ветра имеет большой потенциал, люди поняли очень давно… Например, около 200 года до нашей эры в Персии для размола зерна стали использовать ветряные мельницы.

В Европе подобные сооружения появились примерно в 12-13 веках. Есть версия, что они были привезены из арабских стран во время крестовых походов. Однако «европейский» вариант имел горизонтальную ось, а «восточный» – вертикальную, что может служить доказательством того, что это было изобретение, а не заимствование. Распространению таких мельниц в Европе способствовало то, что в зимний период из-за замерзания рек водяные мельницы переставали функционировать; для ветряных же такой проблемы не стояло.

В 16 веке в городах Европы начинают строиться водонасосные станции с гидродвигателем и лопастями, приводимыми в движение ветром. В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, отвоеванных у моря для использования в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.

В 18-19 веках ветряные мельницы довольно широко использовались в оросительных системах на фермах США.

Установки, производящие электричество из ветра, были изобретены в конце 19 века. Шотландский профессор Джеймс Блайт в 1887 году установил на участке около своего дома 10-метровый ветряк. Вырабатываемая им энергия использовалась для зарядки аккумуляторов, от которых питался электроэнергией коттедж. Таким образом, это был первый в мире дом, обеспеченный электричеством, полученным с помощью ветра.

В Кливленде (штат Огайо, США) Чарльз Браш спроектировал и построил более крупный и сложный ветряк, проработавший у его дома с 1886 по 1900 год. Ветряк состоял из ротора диаметром 17 м, установленным на 18-метровой башне, и имел 144 лопасти. Мощность установки, несмотря на большие по сегодняшним меркам габариты, составляла всего 12 кВт. Подключенная динамо-машина использовалась либо для подзарядки блока батарей, либо для питания ламп накаливания, дуговых ламп и различных двигателей в лаборатории Браша. Однако ветряк стал лишним после 1900 года, когда электричество стало поступать из электростанций Кливленда.



В Дании в 1890 году была построена первая ветроэлектростанция, а к 1908 году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели башни высотой 24 метра и четырехлопастные роторы диаметром 23 метра.

В России разработкой ветроэлектрических станций и ветряков для сельского хозяйства занимался Центральный аэрогидродинамический институт, где в середине 1920-х годов была разработана конструкция «крестьянского ветряка». Устройство могло быть изготовлено на месте из доступных материалов, его мощность варьировалась от 3 до 45 л.с. Такая установка могла освещать 150-200 дворов или приводить в действие мельницу. Для бесперебойной работы был предусмотрен гидравлический аккумулятор.

Предшественница современных ветроэлектростанций с горизонтальной осью была построена в 1931 году в Ялте. Мощность установки составляла 100 кВт, а высота башни –30 м. К 1941 году единичная мощность ветроэлектростанций достигла 1,25 МВт.

Во время Второй мировой войны небольшие ветряки использовались на немецких подводных лодках для подзарядки батарей: таким образом экономилось топливо.

Аналогичный метод применялся для энергоснабжения маяков.

В период с 1940 по 1970 годы интенсивное развитие электросетевого комплекса, обеспечившего независимое от погоды энергоснабжение за умеренные деньги, привело к упадку ветроэнергетики. Возрождение интереса к ней началось в 1980-х, когда в Калифорнии начали предоставляться налоговые льготы для производителей электроэнергии из ветра.


При подготовке материала использована информация Википедии, energycraft.ru.


Источник: SmartGrid.ru